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Symmetrical flow past a double wedge is studied for a high subsonic Mach number. 
The main features of the flow field are discussed in the physical and the hodograph 
plane. It is shown how a regular solution to the hodograph equation exhibits limit lines 
in the physical plane, which are eliminated through a 'cut ' corresponding to the shock 
wave. In  the case of the wedge it is assumed that the shock which is likely to be the 
most stable is the weakest possible. 

The boundary-value problem is solved in the hodograph plane using Telenin's 
method, which has proved to be successful when dealing with equations of mixed 
type. The bounded analytic solution which is thus constructed is regular in the 
hodograph plane but presents three folds in the physical plane. 

The computation is carried out for flow past a 4.5" half-angle wedge at a Mach 
number M, = 0.89. These figures are chosen so that the problem may be justifiably 
treated by potential theory, the entropy gradient behind the shock being negligible. 
In this case the mapping of the solution into the physical plane gives the pressure 
distribution along the double wedge, the sonic line and the shock wave. Of particular 
interest is the point where the sonic line meets the shock. This configuration is in 
agreement with the hypothesis of Nocilla, according to which the shock terminates 
in the supersonic domain. Experimental evidence cannot be obtained, however, 
because of the lack of resolution in this region. 

1. Introduction 
The fact that most jet aeroplanes now fly in the transonic range (and that possible 

future aeroplanes will be restricted to it) explains why there has been such a large 
amount of work done in this area of fluid mechanics over the past decade. But interest 
in this topic dates back to earlier in the century, when mathematicians as well as fluid 
dynamicists found themselves confronted with a new type of equation giving rise to a 
new type of boundary-value problem. The mixed-type equation governing transonic 
flows has been solved to describe desirable shock-free flows past certain types of smooth 
aerofoils for certain values of the Mach number and incidence. The validity of these 
theoretical solutions has now been confirmed experimentally; formerly the existence 
of supercritical shock-free flows was in doubt. Usually a large embedded supersonic 
region is terminated by a shock. 

At subsonic free-stream Mach numbers, the flow past a double wedge exhibits a 
stable recompression shock which terminates the bounded supersonic region. In  this 
work a method is set up for solving such a flow, taking the shock into account, with 
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B M m <  1 
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FIGURE 1. Transonic flow past a symmetrical double wedge. 

the assumption that it terminates at the convex corner. The flow field is discussed in 
the physical as well as the hodograph plane. A boundary-value problem is posed in the 
hodograph plane, which will lead to a many sheeted physical plane. A shock is fitted in 
the flow field to eliminate the ill-behaved part of the physical plane. The problem is 
solved in the hodograph plane using Telenin’s method and the transfer back to the 
physical plane is the subject of the last section. 

2. Flow field in the physical plane 
Telenin’s method (Gilinskii, Telenin & Tinyakov 1964) is a numerical technique 

applicable to elliptic or mixed-type problems in which finite-difference calculations in 
selected co-ordinate directions are eliminated. It was originally developed to solve the 
supersonic blunt-body problem. In  the present work it is applied to a somewhat 
different mixed-type problem, that of supercritical flow past a wedge. In  this case 
the flow is subsonic everywhere except in a local embedded supersonic region above 
the mid-chord section. The outer boundary of this region consists of a sonic line which 
runs into a shock wave at the downstream end. 

As shown in figure 1, in the physical plane we expect to have an analytic solution 
for the stream function $(x, y) as a function of the physical co-ordinates (2, y) except 
along the curve S, where the derivatives are expected to have discontinuities. The 
curve S acts as a cut in this plane. The points B and E are singular points since the 
streamline $ = 0 has a discontinuity in slope there, but these are stagnation points 
and we know the local solutions in the physical as well as the hodograph plane, because 
they are determined by incompressible theory. The point D, the foot of the shock in 
the physical plane, may be a point of discontinuity in the first or higher derivatives 
for the streamline $ = 0. In  the case of the wedge, the shock must run through the 
shoulder to eliminate possible limit lines. Since the physical plane is cut along the 
curve S this singularity presents no difficulties, provided that the characteristic 
through D does not reach the sonic line. 

Working in the physical plane would require the solution of a nonlinear second- 
order partial differential equation for $(., y), which, with the increase in capacity of 
computing machines, is no longer an obstacle. Nevertheless, this solution would require 
an iteration process and therefore would be more time consuming. Also, the boundary 
condition a t  ‘infinity’ would not be as easy to apply as it is in the hodograph plane, 
since in any numerical computation we have to decide on which large rectangle we can 
reasonably apply this condition. 
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1 * A Characteristic 

FIGURE 2. Hodograph for symmetrical flow past a double wedge. 

3. Flow field in the hodograph plane (q, 8) 
3.1. Qualitative description of the Jlow 

The major reason for solving the flow past a double wedge is that the boundary of the 
mixed domain is known almost completely in the hodograph plane, which is usually 
not the case when one deals with an aerofoil of general shape. With the same notation 
as is adopted in the physical plane, the flow field is sketched in figure 2. 

The streamline $ = 0 is made up of the following segments: A ,  B, which is part 
of the 8 = 0 axis; BE, which is a radial line at  an angle 8, to the axis 8 = 0; CD, which 
is an arc of a characteristic since we have locally a Prandtl-Meyer expansion; DE, 
which is also a radial line with polar angle -Ow; finally, EF,, on which 8 = 0. We 
do not know a priori the two images D, and D, of the point D in the hodograph, nor 
do we known the images S, and S, of the shock curve which correspond to the cut S 
in the physical plane. Now we are dealing with a bounded region and the point at  
infinity in the physical plane is mapped at  a finite distance (A,, F,). 

3.2. Equation for the stream function, 

The derivation of the Chaplygin equation for $(q, 8) can be found in any standard 
textbook dealing with the hodograph method. The derivation is based on the assump- 
tion that entropy variations are negligible throughout the flow field. This is valid for 
the transonic flows under consideration, since the local Mach number is everywhere 
close to unity and any shocks generated are weak. Chaplygin’s equation is 

where q is the flow speed non-dimensionalized by ?jmax = [ (y+  l)/(y- l)]*a*, a* is 
the critical speed of sound and y = Cp/Cv is the specific-heat ratio. The transformation 
from the hodograph to the physical plane is realized through the following equations: 

(3.2) 

6-2 
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(3.4) 

where p = (1 - q Z ) W - l ) ,  p being non-dimensionalized by (3.6) 

4. Boundary-value problem in the hodograph plane 

also @(q, 0 )  has to satisfy a homogeneous first-order equation on S of the form 
The function @(q, 0 )  has to satisfy @ = 0 on the open boundary A ,  BCD, + D, EFm; 

where (ql,O1) and (q2,8,) are two points on S corresponding to the same streamline 
(i.e. q+(ql, 6,) = @(q2, e,)), dq/dB being the slope of S at either point 1 or point 2. We 
shall be more explicit later. 

We need to have a singular point inside the domain, otherwise @(q,B) = 0 would 
satisfy all the boundary conditions. Indeed, the image of the point at infinity in the 
physical plane is a singular point for the hodograph equations. It is a branch point 
for @ and the line A ,  B (or lik E) is a common line for the two Riemann surfaces 
corresponding to the upper and lower halves of the physical plane (i.e. y 2 0 or y 6 0). 
I n  the neighbourhood of A ,  the potential @ ( q , O )  has a leading term as given by 
Germain (1962): 

(4.1) 
11.,(q, e)  = h’r-4 sin $w, 

where K is a constant multiplier (corresponding to a change in scale in the physical 
plane). Here we exclude this singular point by enclosing it by a ‘small circle’ and a 
cut running from E to Fa and A ,  to B. 

Clearly there are some other singular points: the two stagnation points B and E. 
But as pointed out in $2,  we know the local incompressible solution and we can match 
it to the compressible one so that, we get a continuous description of the flow field. 

Point C is also a singular point for ~ since the analytic expression for the streamline 
@ = 0 changes there. From a straight line it changes to an epicycloid. There is a 
discontinuity in the second and higher derivatives. Here we suppress this weak singu- 
larity by replacing the exact boundary by an analytical curve as close as necessary 
to the combination of a straight line and an epicycloid. This, of course, implies that 
we are no longer solving for the exact wedge, but for a body which is bounded by an 
analytical curve with a very small radius of curvature at C; the solution is expected 
to be altered only in a very small neighbourhood of C. 

If the characteristic issuing from D, does not meet the sonic line inside the domain 
(dashed line on figure 2), then the supersonic fluid particles moving around the wedge 
shoulder reach the cut S without warning, so that neither D, nor D, is a singular point, 
This is the criterion mentioned in $ 2. But the difficulty of solving in a domain the 

1 sin w = 6/r ,  r2 = 8, + 6(y) (q - pa),, 
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, Characteristic I 

FIGURE 3. Bcimdary of the hodograph for t,he computation. 

boundary of which is not completely known in advance remains. To overcome this a 
solution for @(y) 0)  is first found within a different domain in which the existence of 
the shock curve is ignored. Once this flow field has been determined, the shock can be 
fitted inside it to satisfy all requirements. 

If there were no shock the domain, in the hodograph plane, would be as shown on 
figure 3 (dashed boundary). We then solve for the domain inside the solid curve 
(which is an analytical approximation to the exact boundary) in the class of C" 
solutions. 

5. The multi-sheeted physical plane: necessity for a shock 
Once the boundary-value problem ( 5  4) has been solved by means of a numerical 

method, it is clear that in the hodograph plane certain streamlines are going to be 
tangential to characteristics in the supersonic subdomain, at  least twice. This is a 
consequence of the shape of the boundary and the analyticity of the solution (figure 
4). Eventually, for a high enough value of the stream function, there is no such point 
of contact. The last streamline which is tangential to a characteristic has the geometric 
property of having the same curvature as the characteristic at the point of contact 
(double point). By joining these points together we obtain two limit lines L, and L,, 
which merge together at  the double point. 

On these two lines the Jacobian of the transformation from the hodograph to the 
physical plane vanishes: J = a(z, y) /a(q,  0) = 0, as demonstrated by Lighthill (1953). 
He demonstrated also that to a regular point on the limit line there corresponds, in 
the physical plane, a point where one characteristic is tangential (this gives in the 
physical plane a geometric interpretation to the limit line, as an envelope of one family 
of characteristics) and the other forms a cusp together with the streamline. However, 
since some streamlines are entirely subsonic, the limit line in the physical plane will 
have a cusp which corresponds to the double point in the hodograph. The streamline 
passes directly through this point in the physical plane. The physical plane is three- 
sheeted as shown on figure 5.  

The limit lines are a mathematical obstacle to isentropic flow taking place under the 
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FIGI-RE 4. Limit lines in tlir hodograph. 

c 

A,,F , 7  

FIGURE 5 .  The multi-sheeted physical plane and t,he corresponding hodograph. 

present, boundary conditions. To recover a physically meaningful flow field in the 
physical plane we must fit a shock which will remove the ill-behaved part of the flow 
and leave a doinain of the type shown on figures 1 and 2. 

The shock must satisfy the following conditions. 
(i)  Continuity of the stream function across it,, so that if we denote by (ql, 8,) and 

(q,, 8,) the images in the hodograph plane of a point (ys, rs) on the shock curve in the 
physical plane (see figure 6) we have 

% w 7 1 , 4 )  = w z ,  8 2 ) -  (5.1) 

(ii) Shock relations, which are easily derived in hodogrnph co-ordinates: 
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FIGLXE 6. The shock wave in the physical plane and the hodogrnpli plane. 

(iii) A differential equation along the upstream or downstream part of the shock, 
stating that they map onto the same curve in the physical plane. Taking into account 
(3.2)-(3.5) gives 

which is a relation of the form F[a@/aq, a@/a0, q,, B,, q2, a,, dqlde]  = 0 homo- 
geneous in 4 [here it is written at  the point (qz, O,)]. 

These three conditions are sufficient to construct a unique shock curve in the 
hodograph. 

Reference is made here to the original papers by Nocilla (1957, 1958) and to the 
very comprehensive book by Ferrari & Tricomi (1968), where these papers are dis- 
cussed. Nocilla shows that the shock curves S,  + S, are tangential to the limiting lines 
at  the point where they meet (double point). We recall that, in the physical plane, this 
point corresponds to the first point on the envelope of a family of characteristics. This 
is the point where the shock curve starts in this plane. It has infinitesima1 strength 
there (compression Mach wave) since it is tangential to the characteristic through 
this point. 
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FIGURE 7 .  Polar co-ordinates at  the  singular point. 

We should note here that in the particular case of the wedge we can construct the 
shock curve starting either from the double point or from the foot of the shock (Dl,  D,) 
because we know these points a, priori, once $(q, 0) is known. More details on this will 
be given later. We shall now be more specific about the numerical method used to 
solve for $(q, 0). 

6. Numerical solution 
As mentioned a t  the beginning of the present work, we shall use techniques identical 

to those of Gilinskii et al. (1964), but specialized to transonic flows. References dealing 
with the mathematical basis for the method are to be found in that paper. The method 
seems to be of great interest when dealing with elliptic or mixed types of equations, 
because the problem is formulated in terms of an initial-value problem and the last 
boundary condition is met by iterating successively on one of the initial conditions. 
The scheme, in comparison with a network difference scheme, is very economical in 
computer time and the storage required is not large. Needless to say, in working 
with a linear equation (hodograph equation) the iteration is no longer needed and an 
elementary linear superposition is all that  is required to meet all the boundary con- 
ditions. Reference is also given here to a paper by Holt & Ndefo (1970), where the 
method was used with great success. 

Before we set the numerical algorithm, we transform the complex hodograph 
domain into a rectangular domain. 

6.1. Mapping of the domain onto a rectangle 

First we select a new system of polar co-ordinates (p, 4) with origin a t  the singular 
point qm (figure 7) .  The corresponding formulae are 

P = (9% + 42 - 24,  q cos O)t, ] 
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FIGURE 8. Mapping of the hodograpli domain onto a rectangle. 

Now we define Cartesian co-ordinates by 

v = Pu/Lc.(9)9 9 = 9, ( 6 . 2 )  

where p(Q,) is the analytic approximation to the exact equation of the boundary. See 
figure 8. 

For these new variables the partial differential equation (3.1) assumes the form 

6.2. Telenin's method 

The solution to ( 6 . 3 )  is written as 

in terms of the trigonometric interpolation polynomials of degree N ,  

sin[gi(n-Q,)] (i = 1, ..., N ) .  

Note that by this choice we have already satisfied two boundary conditions (at 
Q, = kn,@ = 0). 

The 1cri(v) are a linear combination 
N 

j=1 
$ki(V) = ci iY~j(v)  

of the Yj(v) = @ ( ~ , q 5 ~ )  (by definition), where Q,j ( j  = 1 , N )  is the value of Q, on the 
j th  ray (see figure 8). The position of the rays is determined by stability considerations. 
The rays are placed at  the zeros of the trigonometric polynomial of degree N + 1 : 
sin ( N  + 1) [$(n - 9)]. A further factor in choosing trigonometric polynomials rather 
than Lagrange polynomials is that the rays are equally spaced from Q, = - n to 9 = T .  
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We choose the Y j ( v )  as our unknowns. Hence the partial derivatives can be written 
on the ray qi = q5j as 

On each ray q5 = qij we are left with a second-order ordinary differential equation of 
the form 

akj  = cckj(v, #j) t  p k j  = p lc j ( v ,  $ j ) -  

Equation (6.5) is solved as an initial-value problem, starting from the boundary 
v = 1 and iterating towards v = 0, with 

(6.61, (6.7) Y j ( V  = 1) = 0, d Y j ( V  = l)/dv = s,,, 
where r = 1, ..., N corresponds to a problem where all the normal derivatives are 
zero except that a t  qi = q5j. 

Since the coeffcients become infinite at v = 0 (a singular point of the solution) we 
integrate only up to a small circle surrounding A,, corresponding to the value v = v,,. 

A linear combination of the N problems is chosen which satisfies two conditions. 
The first condition simply ensures that we have a closed body, i.e. 

dy = 0. LJ 
This implies a linear relation between the normal derivatives: 

The second condition is peculiar to the present problem. Since the foot of the shock is 
located at  D, where the body slope is discontinuous, the flow direction at  the body 
on the upstream side of the shock surface cannot be specified. This is responsible for 
the non-unique situation, as a result of which the selection of the physically meaning- 
ful solution must be realized by means of some criterion. Another case of non-unique- 
ness is found, for example, in the deflexion of a supersonic flow by a simple wedge 
across a shock wave, where two such oblique waves can be found. The criterion that 
the shock generated should be the weakest possible is reasonable and is equivalent, 
in practice, to selecting the set of normal derivatives which maximizes the value of 
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FIGURE 9. Singular lines. 

6.3. Singular lines of the coeficients 

Since ( 3 . 1 )  is of mixed type, the characteristics are real in the hyperbolic subdomain 
and, in general, one of the co-ordinate curves, v = constant, say, will be tangential 
to a characteristic. The curve joining such points of contact is a singular line since it 
is easily proved that the coefficient of a2+/8v2 vanishes there. It is clear that this 
will happen in the case of the wedge. There will be two singular lines Cl and Z2 because, 
in particular, the curve v = 1 has two such points of contact (figure 4) .  But the assump- 
tion of analyticity allows us to cross these lines by analytic continuation. 

It should be noted, however, that these lines have no physical significance and are 
a comequence of the system of co-ordinates chosen. In our particular problem, the 
curve v = 1 is also a streamline, therefore the singular lines and the limit lines pass 
through the same points. The characteristic which is the boundary of the supersonic 
domain is also a singular line C, (figure 9). 

6.4. Numerical integration 

The system of N simultaneous second-order ordinary differential equations (6.5) 
together with initial conditions (6.6) and (6.7) is transformed into a system of 2N 
simultaneous first-order ordinary differential equations by setting 

Y j + N  = d'Yj/dv. 

Hence we obtain the following system Sr: 

dYj /dv  = 'Yj+N, j = 1, ..., N ,  

Y i ( l )  = 0, j = 1, ..., N ,  
Y j + N ( l )  = Sj,, j = 1,  . . . , r ,  N .  

This is solved using a fifth-order Runge-Kutta scheme with automatic error and step- 
size controls on a CDC 6400 computer. 
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7. Transformation to the physical plane: results 
Once a solution has been obtained for $(v, $), i.e. for $(q, 0)) it is possible to locate 

the points D,  and D, (figure 2) and to obtain the pressure distribution on the aerofoil 
and hence the drag. 

7 .1 .  Foot of the attached shock 
The first side of the wedge is represented by the segment BC in the physical as well as 
the hodographplane (figures 1 and 2).  The rear side is represented by DE in the physical 
plane and D, E in the hodograph. 

Certainly we must have 

dy = 0 

!m S,,, .ID,, 

in both planes, 
S , c D E  

dy+ dy+ dy = 0 in the hodograph. in particular 
+ = O  

dy = 0 
I C D ,  

But 

since CD, is an arc of a characteristic where J = a(x ,  y)/a(q,  8 )  = 0. Hence it must be 
true that 

L c d Y  = J E 2  
Along BC and ED,, 8 = constant and only q varies, furthermore $ = 0, so that 
a$/aq = 0 on both segments. Equation (3.4) yields 

Of course, as q approaches zero, dy is well behaved because a$/ae vanishes very rapidly 
there. The limit is obtained by matching locally the compressible to the incompressible 
solution. It is easily shown that the incompressible potential at  a concave corner 
yields a derivative a$J88 - Kqn/elc, Ow being the half-angle of the wedge. The value of 
the constant K is found by equating a$Ja8 and a@/ae at a point where, say, 

P i  = O.i[ (Y-  i ) / ( Y +  1 ) P .  

At this point the value of y is 
Ow sin 'u, ( ~ - @ ~ ) ; 6 , ~  y . = y = h '  7r-ow qi 

Note that the values for K are going to be different at  the leading and trailing edges 
of the wedge. Performing the integration, we obtain at the same time the numerical 
values of the half-thickness &: 

which determines the value of qn,. 
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FIGURE 10. Pressure distribution along the double wedge. 

7.2.  Pressure distribution on the wedge 
As a by-product of the previous computation we were able to obtain 

Y = Y ( d *  (7.2) 

This allows us to sketch the distribution of the pressure coefficient Cp on the wedge 
since the dependence of C, on the speed is given by 

p -pm y - 1 [( 1 - qz)rlcr-s - ( 1  - q%)Y"Y-l'] c*=--- 
tpm Zo - Y q!$ (1 - q ! $ ) W 1 )  

= Cp(q). (7.3) 

Equations (7.2) and (7.3) yield a parametric representation of Cp. (See figure lo.) 
The discontinuity in Cp a t  x/c = 0.5 corresponds to the recompression through the 
shock a t  D .  
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7.3. Drag 

The drag on the wedge is found by integrating C, along the aerofoil, which is equivalent 
to 

9 = 2  

I- I- I- 

Again the middle integral vanishes because CD, is an arc of a characteristic where 
dy = 0, so that the total drag is the algebraic sum of the drag on the front part and 
the drag on the rear part of the wedge. The element dy has the same expression as in 
(7.1) and is well behaved in the limit as q approaches zero. Also pa - p  vanishes there 
since p, is the stagnat,ion pressure. 

We use t,he matching of 5 7.1 to compute the contribution to the drag of the part 
of the aerofoil near the two stagnation p0int.s. We obtain 

The first and the t,hird integrals correspond to the fore drag (they are positive) while 
the second and last integrals correspond to the drag on the rear part of the wedge 
(theF are negative). 

7.4. Results 

The method is applied to a 4.5" half-angle wedge at  a Mach number M, = 0.89. These 
figures have been chosen so t,hat the recompression shock will not be too strong for 
the flow downstream of it to be treated by transonic potential theory, 

There is no previous theory with which to compare the results. Cole (1951) used 
small perturbation theory to solve for the transonic flow past a simple wedge. 

Comparison with experiments on a double wedge such as those by Bryson (1952) 
is not' possible since the influence of viscosity on the potential flow field is to change 
completely the flow pattern on the rear side of the wedge. Viscosity creates a small 
separation bubble near the convex corner which causes the foot of the shock to move 
downstream of the shoulder. As a result of this boundary-layer interaction, the 
supersonic region is, in that case, partly bounded by the rear part of the wedge, which 
creates a region of very low pressure. This factor is responsible for a large experimental 
drag. 

It should be noted at this point that viscosity will play a less important role for a 
smooth aerofoil and therefore in this case the present theory would be suitable for 
predicting the point where the shock actually meets the surface normally, downstream 
of t,he point of maximum t'hickness (figure 1) .  
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FIGURE 11. Hodograph plane in (Y, q5) co-ordinates. -, 
streamlines; -.-, sonic lines; -, shock wave. 

FIGURE 12. Hodograph plane in (p, 0)  co-ordinates. -, streamlines; 
-, shock wave. 

The inviscid model we have been using here has enabled us to predict the pressure 
distribution along the double wedge (figure lo) ,  to construct the pertinent hodograph 
plane (figures 1 1  and 12) and to obtain a visualization of the sonic line and the shock 
wave in the physical plane (figure 13), which confirms what Nocilla (1957, 1958) had 
foreseen. 

The shock curve appears in the middle of the supersonic region, at a point where 
t,he Mach number is Mi = 1.05. The shock is tangential there to the compression Mach 
wave. It is worth noting that the part ofthe shock embedded in the supersonic domain 
is very close to the sonic line which is behind it. This may explain why it is difficult 
to detect this flow pattern experimentally and the shock is often shown as being 
coincident with the sonic line. 
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FIGURE 13. Sonic line and shock wave. 

8. Conclusion 
A solution to the transonic flow past a symmetrical double wedge is constructed 

in the hodograph plane using Telenin’s method. In the case of the flow past a double 
wedge we know a priori the boundary of the domain in the physical as well as in the 
hodograph plane. 

Comparison with experiments is impossible because of the boundary-layer separa- 
tion. The mathematical model represents the flow past the double wedge in the limit 
where the Reynolds number approaches infinity. 

The solution exhibits the sonic line and the shock curve pert,inent to the formulation, 
and a description of the flow pattern is given in the neighbourhood of the point where 
the sonic line meets the shock. 

This work was submitted in partial fulfilment of the requirements for the degree of 
Doctor of Philosophy at the University of California, Berkeley. It was supported in 
part by the Air Force Office of Scientific Research under a Grant supervized by M. 
Holt. 
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